Sign in
Explore Insights and Innovations in Mechanical Engineering through Guest Blogging
Explore Insights and Innovations in Mechanical Engineering through Guest Blogging
Your Position: Home - Tungsten Ore - Guidelines for tungsten electrode and color types
Guest Posts

Guidelines for tungsten electrode and color types

May. 13, 2024

Guidelines for tungsten electrode and color types

Editor's note: To read an update regarding tungsten electrodes guidelines, click here.

For more information, please visit Tungsten Rod Types.

Tungsten is a rare metallic element used for manufacturing gas tungsten arc welding (GTAW) electrodes. The GTAW process relies on tungsten's hardness and high-temperature resistance to carry the welding current to the arc. Tungsten has the highest melting point of any metal, 3,410 degrees Celsius.

These nonconsumable electrodes come in a variety of sizes and lengths and are composed of either pure tungsten or an alloy of tungsten and other rare-earth elements and oxides. Choosing an electrode for GTAW depends on the base material type and thickness and whether you weld with alternating current (AC) or direct current (DC). Which one of three end preparations you choose, balled, pointed, or truncated, also is crucial in optimizing the results and preventing contamination and rework.

Each electrode is color-coded to eliminate confusion over its type. The color appears at the tip of the electrode.

Pure Tungsten (Color Code: Green)

Pure tungsten electrodes (AWS classification EWP) contain 99.50 percent tungsten, have the highest consumption rate of all electrodes, and typically are less expensive than their alloyed counterparts.

These electrodes form a clean, balled tip when heated and provide great arc stability for AC welding with a balanced wave. Pure tungsten also provides good arc stability for AC sine wave welding, especially on aluminum and magnesium. It is not typically used for DC welding because it does not provide the strong arc starts associated with thoriated or ceriated electrodes.

Thoriated (Color Code: Red)

Thoriated tungsten electrodes (AWS classification EWTh-2) contain a minimum of 97.30 percent tungsten and 1.70 to 2.20 percent thorium and are called 2 percent thoriated. They are the most commonly used electrodes today and are preferred for their longevity and ease of use. Thorium increases the electron emission qualities of the electrode, which improves arc starts and allows for a higher current-carrying capacity. This electrode operates far below its melting temperature, which results in a considerably lower rate of consumption and eliminates arc wandering for greater stability. Compared with other electrodes, thoriated electrodes deposit less tungsten into the weld puddle, so they cause less weld contamination.

These electrodes are used mainly for specialty AC welding (such as thin-gauge aluminum and material less than 0.060 inch) and DC welding, either electrode negative or straight polarity, on carbon steel, stainless steel, nickel, and titanium.

During manufacturing, thorium is evenly dispersed throughout the electrode, which helps the tungsten maintain its sharpened edge—the ideal electrode shape for welding thin steel—after grinding. Note: Thorium is radioactive; therefore, you must always follow the manufacturer's warnings, instructions, and the Material Safety Data Sheet (MSDS) for its use.

Ceriated (Color Code: Orange)

Ceriated tungsten electrodes (AWS classification EWCe-2) contain a minimum of 97.30 percent tungsten and 1.80 to 2.20 percent cerium and are referred to as 2 percent ceriated. These electrodes perform best in DC welding at low current settings but can be used proficiently in AC processes. With its excellent arc starts at low amperages, ceriated tungsten has become popular in such applications as orbital tube and pipe fabricating, thin sheet metal work, and jobs involving small and delicate parts. Like thorium, it is best used to weld carbon steel, stainless steel, nickel alloys, and titanium, and in some cases it can replace 2 percent thoriated electrodes. Ceriated tungsten has slightly different electrical characteristics than thorium, but most welders can't tell the difference.

Using ceriated electrodes at higher amperages is not recommended because higher amperages cause the oxides to migrate quickly to the heat at the tip, removing the oxide content and nullifying its process benefits.

Lanthanated (Color Code: Gold)

Lanthanated tungsten electrodes (AWS classification EWLa-1.5) contain a minimum of 97.80 percent tungsten and 1.30 percent to 1.70 percent lanthanum, or lanthana, and are known as 1.5 percent lanthanated. These electrodes have excellent arc starting, a low

burnoff rate, good arc stability, and excellent reignition characteristics—many of the same advantages as ceriated electrodes. Lanthanated electrodes also share the conductivity characteristics of 2 percent thoriated tungsten. In some cases, 1.5 percent lanthanated can replace 2 percent thoriated without having to make significant welding program changes.

Lanthanated tungsten electrodes are ideal if you want to optimize your welding capabilities. They work well on AC or DC electrode negative with a pointed end, or they can be balled for use with AC sine wave power sources. Lanthanated tungsten maintains a sharpened point well, which is an advantage for welding steel and stainless steel on DC or AC from square wave power sources.

Unlike thoriated tungsten, these electrodes are suitable for AC welding and, like ceriated electrodes, allow the arc to be started and maintained at lower voltages. Compared with pure tungsten, the addition of 1.5 percent lanthana increases the maximum current-carrying capacity by approximately 50 percent for a given electrode size.

Zirconiated (Color Code: Brown)

Zirconiated tungsten electrodes (AWS classification EWZr-1) contain a minimum of 99.10 percent tungsten and 0.15 to 0.40 percent zirconium. A zirconiated tungsten electrode produces an extremely stable arc and resists tungsten spitting. It is ideal for AC welding because it retains a balled tip and has a high resistance to contamination. Its current-carrying capability is equal to or greater than that of thoriated tungsten. Under no circumstances is zirconiated recommended for DC welding.

Rare Earth (Color Code: Gray)

Rare-earth tungsten electrodes (AWS classification EWG) contain unspecified additives of rare-earth oxides or hybrid combinations of different oxides, but manufacturers are required to identify each additive and its percentage on the package. Depending on the additives, desired results can include a stable arc in both AC and DC processes, greater longevity than thoriated tungsten, the ability to use a smaller-diameter electrode for the same job, use of a higher current for a similar-sized electrode, and less tungsten spitting.

Tungsten Preparation — Balled, Pointed, or Truncated?

After selecting a type of electrode, the next step is to select an end preparation. The three choices are balled, pointed, and truncated.

A balled tip generally is used on pure tungsten and zirconiated electrodes and is suggested for use with the AC process on sine wave and conventional square wave GTAW machines. To ball the end of the tungsten properly, simply apply the AC amperage recommended for a given electrode diameter (seeFigure 1), and a ball will form on the end of the electrode. The diameter of the balled end should not exceed 1.5 times the diameter of the electrode (for example, a 1/8-in. electrode should form a 3/16-in.-diameter end). A larger sphere at the tip of the electrode can reduce arc stability. It also can fall off and contaminate the weld.

The company is the world’s best Niobium Rod supplier. We are your one-stop shop for all needs. Our staff are highly-specialized and will help you find the product you need.

Related links:
Tungsten and filler rod diameter

A pointed and/or truncated tip (for pure tungsten, ceriated, lanthanated, and thoriated types) should be used for inverter AC and DC welding processes. To grind the tungsten properly, use a grinding wheel specially designated for tungsten grinding (to prevent contamination) and one that is made of Borazon® or diamond (to resist tungsten's hardness). Note: If you are grinding thoriated tungsten, make sure you control and collect the dust; have an adequate ventilation system at the grinding station; and follow the manufacturer's warnings, instructions, and MSDS.

Grind the tungsten straight on the wheel versus at a 90-degree angle (seeFigure 2) to ensure that the grind marks run the length of the electrode. Doing so reduces the presence of ridges on the tungsten that could create arc wandering or melt into the weld puddle, causing contamination.

Generally, you will want to grind the taper on the tungsten to a distance of no more than 2.5 times the electrode diameter (for example, for a 1/8-in. electrode, grind a surface 1/4 to 5/16 in. long). Grinding the tungsten to a taper eases the transition of arc starting and creates a more focused arc for better welding performance.

When welding with low current on thin material (from 0.005 to 0.040 in.), it is best to grind the tungsten to a point. A pointed tip allows the welding current to transfer in a focused arc and helps prevent thin metals, such as aluminum, from becoming distorted. Using pointed tungsten for higher-current applications is not recommended, because the higher current can blow off the tip of the tungsten and cause weld puddle contamination.

For higher-current applications, it is best to grind a truncated tip. To achieve this shape, first grind the tungsten to a taper as explained previously, then grind a 0.010- to 0.030-in. flat land on the end of the tungsten. This flat land helps prevent the tungsten from being transferred across the arc. It also prevents a ball from forming.

Mike Sammons is sales and marketing manager for Weldcraft, 2741 N. Roemer Road, Appleton, WI 54911, 920-882-6811, fax 920-882-6844, customerservice@weldcraft.com, www.weldcraft.com.

Tungsten Electrode Types and Uses

The most popular arc welding processes are GMAW and GTAW. The GMAW process is faster; however, GTAW or TIG welding produces higher quality welds. For many industries; such as aerospace, the bar for quality welding requires the process be optimized. Meeting this demand begins with choosing the best materials. Therefore, knowing tungsten electrode types and uses is essential to make the right selection for your project.

The Different Tungsten Electrode Types and Uses

Tungsten electrodes are classified according to the type of additive, as shown in the table below.

TUNGSTEN ELECTRODE TYPES USES Color Additive  Tungsten (%) Attributes and Applications AC AC/DC DC Green None 99.5 Pure tungsten electrodes provide a stable Stable arc for AC welding. It can be used for DC, but typically is not. Common used with aluminum base materials.  ✔ BrownWhite Zirconium 99.1 Zirconiated tungsten electrodes are most often used for applications where the surface melting point is higher than inner materials. A good example is pressure vessels that must withstand high internal temperatures and pressures.  ✔ BlackBlueGold Lanthanum 97.8 Lanthanated tungsten electrodes give stable arcs, can be used at both low and high temperatures and are commonly used with a wide range of base materials.  ✔ ✔ GreyOrange Cerium 97.3 Ceriated tungsten electrodes can be used for both AC and DC. They use low amperage, arc stability and have good operational lifetimes. Typically used for thin and/or delicate metal applications.  ✔ ✔ RedYellow Thorium 97.3 This additive is radioactive. However, thoriated tungsten electrodes exhibit a reduced consumption rate, and lower deposition and strong arc starts.  ✔


As shown above, all tungsten electrodes have advantages that can be beneficial depending upon your application. For the best results, however, it is necessary to leverage the tungsten electrode types and uses optimally. 

Optimal Tungsten Electrode Welding

The best TIG welding is achieved by instituting the best process. This is achieved by following the steps below:

Steps for an Optimized GTAW process:

Step 2: Choose the best method

The best method for high quality GTAW is orbital welding, which has the following attributes.

  • Automation
  • Accuracy
  • Safety

Step 2: Choose the best materials

The best choice of tungsten electrode for your project should include 

consideration of the following

  • Electrode size
  • Current level and type 
  • Power source
  • Weld head used

Step 3: Choose the best equipment

Finally, it is important to select the proper equipment that will deliver 

  • Consistent performance
  • Controlled operation
  • Ease of use

Knowing the tungsten electrode types and following the steps above will enable you to create an optimal TIG welding process that satisfies the demands and requirements for your project, irrespective of industry.

Arc Machines, Inc. is an industry leader in supplying advanced and high-quality welding equipment and service. This includes orbital welding machines, materials, and expertise; such information about tungsten electrode types and uses to aid you in making the best selection for your project. For inquiries regarding products, contact sales@arcmachines.com. For service inquiries, contact service@arcmachines.com. Arc Machines welcomes the opportunity to discuss your specific needs. Contact us to arrange a meeting.

Want more information on Fine Tungsten Wire? Feel free to contact us.

Comments

0 of 2000 characters used

All Comments (0)
Get in Touch

Copyright © 2020 Wordblogger.net

  |   Minerals & Metallurgy   |   Toys & Hobbies   |   Timepieces, Jewelry, Eyewear   |   Textiles & Leather Products   |   Telecommunications   |   Shoes & Accessories   |   Service Equipment   |   Security & Protection   |   Rubber & Plastics